Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Technology Breakthrough Achieves Objectives for SAE Preload Targets in Heavy Duty Wheel Ends

2009-10-06
2009-01-2887
Patents granted recently to Mr. Rode have changed the industry capability to adjust and verify wheel-end bearings on trucks. Until now it was believed1 that there was nothing available to confirm or verify the most desirable settings of preload on these bearings. The new, breakthrough invention is a tool and spindle-locking nut that permit quick and accurate wheel bearing adjustment by utilizing direct reading force measurement. Bearings can be set to either SAE recommended preloads or specific endplay settings. The author has been working on bearing adjustment methods for industrial applications for over forty years, and considers these inventions to be his most important breakthrough for solving this elusive bearing adjustment problem. Consistent wheel bearing preload adjustment was not possible before, even though it was widely known to achieve the best wheel performance as noted in SAE specification J2535 and re-affirmed in 2006 by the SAE Truck and Bus Wheel Subcommittee.
Journal Article

Robust Observation of Tractor-trailer Vertical Forces Using Inverse Model and Exact Differentiator

2010-04-12
2010-01-0637
In this paper, we are interested in developing a robust tire-force estimator for heavy duty vehicles. We use a combined model of the articulated vehicle: a yaw plane model for the chassis motion and a vertical plane model for the axles. In the proposed method, we make use of the on-board available sensors to which low-cost sensors are added. In order to optimize the sensors configuration, a robust exact differentiator is used in order to obtain accelerations from the measured velocities. Once the differentiation is obtained, the model is inverted to determine the unknown input forces. The approach is validated by comparing the estimation results to those given by the software simulator prosper .
Journal Article

Systems to Silicon: A Complete System Approach to Power Semiconductor Selection for Environmentally Friendly Vehicles

2010-10-05
2010-01-1989
A complete system approach to power semiconductor analysis and selection is set forth in this paper. In order to address design overkill, a suitable power profile across the desired drive schedule is obtained through vehicle simulation in lieu of worse case operating conditions. The representative profile is then applied to detailed models of the inverter, power device, and power device thermal stack-up in order to predict worse case, silicon junction temperature rise. The simulation stream includes a closed silicon thermal loop that leads to more accurate power loss and junction temperature calculations. The models are combined and exercised in a single platform for ease of integration and fast simulation. Herein, the methods will be applied to a working example of an inverter for motor drives, and analytical results will be reviewed.
Journal Article

Intelligent Predictive Cruise Control Application Analysis for Commercial Vehicles based on a Commercial Vehicles Usage Study

2013-10-20
2013-01-9022
With the introduction of advanced digital road maps, which include information on the slope and curve radius of the highways, predictive control for standard and hybrid commercial vehicles, based on these maps, is about to be released by the vehicle manufacturers. For example, intelligent predictive cruise control has been announced for introduction in 2012 by Scania and Daimler. In addition, hybrid commercial city buses like MAN's Lion's City Hybrid have already been implemented. But the question remains about the type of vehicle suitable for the implementation of predictive intelligent concepts, due to the high investment cost compared to the sometimes relatively low operating cost savings.
Journal Article

Modularity Adoption in Product Development: A Case Study in the Brazilian Agricultural Machinery Industry

2014-01-15
2013-01-9093
Facing a competitive and globalized market and with increasingly demanding customers, companies must constantly seek the development of practices in the development of new products. One of the current practices is the adoption of modularity. In that sense, the objective of this paper is to conduct an analysis of this practice in a Brazilian company, which manufactures agricultural machinery. The applicability of modular design in current products is focused. Therefore, a case study approach has been chosen. First, a review of the scientific literature was conducted, followed by field research, for collecting data based on interviews with product engineers and technical documentation. The case study shows the applicability of the modular design concept in a combine header, by increasing the number of repeated components. The modular header approach facilitates the implementation of engineering changes and allows greater standardization of components.
Journal Article

A Sequence Retainable Iterative Algorithm for Rainflow Cycle Counting

2014-01-15
2013-01-9091
To get a sequence retainable rainflow cycle counting algorithm for fatigue analysis, an alternate equivalent explanation to rainflow cycle counting is introduced, based on which an iterative rainflow counting algorithm is proposed. The algorithm decomposes any given load-time history with more than one crest into three sub-histories by two troughs; each sub-history with more than one crest is iteratively decomposed into three shorter sub-histories, till each sub-history obtained contains only one single or no crest. Every sub-history that contains a single crest corresponds to a local closed (full) cycle. The mean load and alternate load component of the local cycle are calculated in parallel with the iterative procedure.
Journal Article

An Experimental Methodology for Measuring of Aerodynamic Resistances of Heavy Duty Vehicles in the Framework of European CO2 Emissions Monitoring Scheme

2014-04-01
2014-01-0595
Due to the diversity of Heavy Duty Vehicles (HDV), the European CO2 and fuel consumption monitoring methodology for HDVs will be based on a combination of component testing and vehicle simulation. In this context, one of the key input parameters that need to be accurately defined for achieving a representative and accurate fuel consumption simulation is the vehicle's aerodynamic drag. A highly repeatable, accurate and sensitive measurement methodology was needed, in order to capture small differences in the aerodynamic characteristics of different vehicle bodies. A measurement methodology is proposed which is based on constant speed measurements on a test track, the use of torque measurement systems and wind speed measurement. In order to support the development and evaluation of the proposed approach, a series of experiments were conducted on 2 different trucks, a Daimler 40 ton truck with a semi-trailer and a DAF 18 ton rigid truck.
Journal Article

Tire Traction of Commercial Vehicles on Icy Roads

2014-09-30
2014-01-2292
Safety and minimal transit time are vital during transportation of essential commodities and passengers, especially in winter conditions. Icy roads are the worst driving conditions with the least available friction, leaving valuable cargo and precious human lives at stake. The study investigates the available friction at the tire-ice interface due to changes in key operational parameters. Experimental analysis of tractive performance of tires on ice was carried out indoor, using the terramechanics rig located at the Advanced Vehicle Dynamics Laboratory (AVDL) at Virginia Tech. The friction-slip ratio curves obtained from indoor testing were inputted into TruckSIM, defining tire behavior for various ice scenarios and then simulating performance of trucks on ice. The shortcomings of simulations in considering the effects of all the operational parameters result in differences between findings of indoor testing and truck performance simulations.
Journal Article

Components Durability, Reliability and Uncertainty Assessments Based on Fatigue Failure Data

2014-09-30
2014-01-2308
Road vibrations cause fatigue failures in vehicle components and systems. Therefore, reliable and accurate damage and life assessment is crucial to the durability and reliability performances of vehicles, especially at early design stages. However, durability and reliability assessment is difficult not only because of the unknown underlying damage mechanisms, such as crack initiation and crack growth, but also due to the large uncertainties introduced by many factors during operation. How to effectively and accurately assess the damage status and quantitatively measure the uncertainties in a damage evolution process is an important but still unsolved task in engineering probabilistic analysis. In this paper, a new procedure is developed to assess the durability and reliability performance, and characterize the uncertainties of damage evolution of components under constant amplitude loadings.
Journal Article

Fused Dynamics of Unmanned Ground Vehicle Systems

2014-09-30
2014-01-2322
Through inverse dynamics-based modeling and computer simulations for a 6×6 Unmanned Ground Vehicle (UGV) - a 6×6 truck - in stochastic terrain conditions, this paper analytically presents a coupled impact of different driveline system configurations and a suspension design on vehicle dynamics, including vehicle mobility, and energy efficiency. A new approach in this research work involves an estimation of each axle contribution to the level of potential mobility loss/increase and/or energy consumption increase/ reduction. As it is shown, the drive axles of the vehicle interfere with the vehicle's dynamics through the distribution of the wheels' normal reactions and wheel torques. The interference causes the independent system dynamics to become operationally coupled/fused and thus diminishes vehicle mobility and energy efficiency. The analysis is done by the use of new mobility indices and energy efficiency indices which are functionally coupled/fused.
Journal Article

Development of a Dynamic Vibration Absorber to Reduce Frame Beaming

2014-09-30
2014-01-2315
This paper describes the development and testing of a Dynamic Vibration Absorber to reduce frame beaming vibration in a highway tractor. Frame beaming occurs when the first vertical bending mode of the frame is excited by road or wheel-end inputs. It is primarily a problem for driver comfort. Up until now, few options were available to resolve this problem. The paper will review the phenomenon, design factors affecting a vehicle's sensitivity to frame beaming, and the principles of Dynamic Vibration Absorbers (AKA Tuned Mass Dampers). Finally, the paper will describe simulation and testing that led to the development of an effective vibration absorber as a field fix.
Journal Article

Virtual Vehicle Design based on Key Performance Indicators Assessing the Vehicle Portfolio

2014-09-30
2014-01-2415
This paper focuses on the manufacturer's conflict in the conceptual design of commercial vehicles between highly customized special vehicles and the greatest possible degree of standardization. Modularity and standardization are crucial success factors for realizing high variance at the best cost efficiency in development and production as well for achieving the highest quality standards at reduced efforts for technical validation. The presented virtual design approach for commercial vehicle concepts allows for purposeful design and integration of new concepts and technologies on the component level in an existing product portfolio - not neglecting manufacture's portfolio requirements concerning standardization and modularity. The integrated tool chain helps to bring trade-offs to a head that exist in balancing between dedicated vehicles with best customer-relevant characteristics and standardized vehicles with the highest degree of commonality.
Journal Article

Effect of Terrain Roughness on the Roll and Yaw Directional Stability of an Articulated Frame Steer Vehicle

2013-09-24
2013-01-2366
Compared to the vehicles with conventional steering, the articulated frame steer vehicles (ASV) are known to exhibit lower directional and roll stability limits. Furthermore, the tire interactions with relatively rough terrains could adversely affect the directional and roll stability limits of an ASV due to terrain-induced variations in the vertical and lateral tire forces. It may thus be desirable to assess the dynamic safety of ASVs in terms of their directional control and stability limits while operating on different terrains. The effects of terrain roughness on the directional stability limits of an ASV are investigated through simulations of a comprehensive three-dimensional model of the vehicle with and without a rear axle suspension. The model incorporates a torsio-elastic rear axle suspension, a kineto-dynamic model of the frame steering struts and equivalent random profiles of different undeformable terrains together with coherence between the two tracks profiles.
Journal Article

Power Consumption Analysis of a Flexible-Wheel Suspension Planetary Rover Operating upon Deformable Terrain

2013-09-24
2013-01-2384
This study analyzes the power consumption of a specific Planetary Exploration Vehicle (PEV) subsystem known as Flexible-Wheel (FW) suspension, more specifically the interaction between a FW and the deformable terrain upon which it traverses. To achieve this a systematic and analytical calculation procedure has been developed, which culminates in the definition of three dimensionless properties to capture the FW-soil interaction. Aimed towards the design engineer participating in concept evaluation, and the control engineer conducting initial analyses, this study has found that the resistance coefficient for the interaction between a FW and the deformable terrain can, in general, be several orders of magnitude higher than the rolling resistance of a pneumatic tire operating upon rigid terrain.
Journal Article

Performance Analysis of Active Independent Front Steering (AIFS) for Commercial Vehicles with Greater Lateral Load Shift Propensity

2013-09-24
2013-01-2355
An Active Independent Front Steering (AIFS) offers attractive potential for realizing improved directional control performance compared to the conventional Active Front Steering (AFS) system, particularly under more severe steering maneuvers. The AIFS control strategy adjusts the wheel steer angles in an independent manner so as to utilize the maximum available adhesion at each wheel/road contact and thereby compensate for cornering loss caused by the lateral load transfer. In this study, the performance potentials of AIFS are explored for vehicles experiencing greater lateral load transfers during steering maneuvers such as partly-filled tank trucks. A nonlinear yaw plane model of a two-axle truck with limited roll degree-of-freedom is developed to study the performance potentials of AIFS under different cargo fill conditions.
Journal Article

Experimental Determination of the Effect of Cargo Variations on Steering Stability

2013-09-24
2013-01-2359
Mission demands for U.S. military tactical trucks require them to transport a broad array of cargo types, including intermodal containers. The wide range of mass properties associated with these diverse cargo requirements has resulted in potential for steering stability issues. The potential for steering stability issues largely originates from the high mobility characteristics of single-unit military tactical trucks relative to typical commercial cargo carriers. To quantify the influence of cargo variations on stability, vehicle dynamics experiments were conducted to obtain steering stability measurements for a tactical cargo truck hauling a broad range of rigid cargo loadings. The basic relationship for the understeer gradient measure of directional response behavior and observed data trends from the physical experiments were used to evaluate the relationship between the steering stability of the truck and the mass properties of the cargo.
Journal Article

A Parametric Assessment of Skirt Performance on a Single Bogie Commercial Vehicle

2013-09-24
2013-01-2415
A Department of Energy funded research project currently in the final stages of completion has resulted in a web-based tool that gives non-expert users the ability to add aerodynamic devices to a CFD model of a single bogie trailer and generalized tractor model. This model was used to assess the aerodynamic performance of skirt geometries. The skirts were defined using 5 independent geometric parameters and 2 installation parameters. These parameters allow enough freedom in the geometry definition to capture the shape and installation position and angle of a wide number of commercially available skirts on the market today. Using a Design of Experiments approach, the aerodynamic drag response of the truck and trailer to any parametric change in the skirt geometry has been determined across a range of yaw angles.
Journal Article

A Study on Operation Fluid Consumption for Heavy Duty Diesel Engine Application using both, EGR and SCR

2013-09-24
2013-01-2474
This paper describes a method for optimization of engine settings in view of best total cost of operation fluids. Under specific legal NOX tailpipe emissions requirements the engine out NOX can be matched to the current achievable SCR NOX conversion efficiency. In view of a heavy duty long haul truck application various specific engine operation modes are defined. A heavy duty diesel engine was calibrated for all operation modes in an engine test cell. The characteristics of engine operation are demonstrated in different transient test cycles. Optimum engine operation mode (EOM) selection strategies between individual engine operation modes are discussed in view of legal test cycles and real world driving cycles which have been derived from on-road tests.
Journal Article

Overcoming the Range Limitation of Medium-Duty Battery Electric Vehicles through the use of Hydrogen Fuel-Cells

2013-09-24
2013-01-2471
Battery electric vehicles possess great potential for decreasing lifecycle costs in medium-duty applications, a market segment currently dominated by internal combustion technology. Characterized by frequent repetition of similar routes and daily return to a central depot, medium-duty vocations are well positioned to leverage the low operating costs of battery electric vehicles. Unfortunately, the range limitation of commercially available battery electric vehicles acts as a barrier to widespread adoption. This paper describes the National Renewable Energy Laboratory's collaboration with the U.S. Department of Energy and industry partners to analyze the use of small hydrogen fuel-cell stacks to extend the range of battery electric vehicles as a means of improving utility, and presumably, increasing market adoption.
Journal Article

Secondary Fuel Injection Layout Influences on DOC-DPF Active Regeneration Performance

2013-09-24
2013-01-2465
Catalysts and filters continue to be applied widely to meet particulate matter regulations across new and retrofit diesel engines. Soot management of the filter continues to be enhanced, including regeneration methodologies. Concerns regarding in-cylinder post-injection of fuel for active regeneration increases interests in directly injecting this fuel into the exhaust. Performance of secondary fuel injection layouts is discussed, and sensitivities on thermal uniformity are measured and analyzed, providing insight to packaging challenges and methods to characterize and improve application designs. Influences of end cone geometries, mixers, and injector mounting positions are quantified via thermal distribution at each substrate's outlet. A flow laboratory is applied for steady state characterization, repeated on an engine dynamometer, which also provides transient results across the NRTC.
X